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A mathematical model for the radiation of baffled finite ducts is presented. This
model was developed to be used for the design process of Magnetic Resonance
Imaging (MRI) scanners. The added value of utilizing this model over using
general purpose acoustics software is the increased insight into the acoustic
phenomena in the baffled finite duct and the increased efficiency. The problem
domain of the scanner was characterized as a finite duct with infinite flanges,
acoustically excited by wall vibration. A mathematical model for this problem
domain was developed, based on a model description of the acoustic field. The
model was constructed by using a Fourier transformation technique for the
Helmholtz equation and the velocity boundary conditions at the duct’s wall. The
diffraction of sound at the flanges was described with reflection coefficients. Two
simultaneous matrix equations were found describing the acoustic field in the
wall-driven baffled finite duct. Special attention was paid to the efficient
implementation of the model. The physical and computational characteristics of
the model were determined by parameter study and by comparison with Fourier
Boundary Element Method (BEM) models of the MRI scanner. A good
agreement was found between the results obtained with the baffled duct and the
Fourier BEM models. Because of the direct relationship between design
parameters and acoustic response, and because of the better numerical efficiency
of the baffled duct model as opposed to the Fourier BEM models, the application
of the baffled duct model in the design process is viable.
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1. INTRODUCTION

In contemporary acoustic engineering it is becoming more and more common to
use general purpose acoustics software based on the Finite Element Method
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(FEM) or Boundary Element Method (BEM) in the design process of complex
structures. With the ever increasing computational power of modern computers
and maturation of the acoustic software, the usage of these programs will certainly
increase. But the methods normally used in these programs have a major
drawback: you only get numbers, not insight. An acoustic engineer has to relate
design changes to acoustic response changes, but the methods used in these
programs do not offer this relationship directly; it is often a matter of engineering
experience to interpret the numbers to obtain insight. This problem can be tackled
by the development of problem domain specific tools. In these tools the geometry
of the acoustic domain is restricted, but through this simplification a much better
understanding of the acoustical phenomena in that domain is gained, possibly
together with an increased efficiency. The benefits of this approach will be
presented here with the development of a mathematical model for the acoustic
radiation of a Magnetic Resonance Imaging (MRI) scanner.

An MRI scanner is used for medical imaging of human body internals in
arbitrary direction (see, e.g., reference [1]). It is especially suited for soft tissue
imaging. A well known problem of MRI-scanners is the fact that during the
imaging process both patient and operator are exposed to high noise levels (up
to 90–100 dB), mainly caused by the vibration of the so-called gradient coils (see
Figure 1). The development of new MRI imaging techniques brings about even
higher noise levels and it is recognized that a substantial decrease of the noise
production of the scanner can only be achieved by explicitly incorporating the
acoustic behavior of the gradient coils into the design phase (see, e.g., reference
[2]). However, this is far from straightforward because of the large dimensions of
the MRI scanner and the complexity of the vibration of the gradient coils, which
necessitates large modelling and computational efforts using general purpose
acoustic tools.

A good model for the acoustic behavior of the MRI scanner and its gradient
coils must incorporate two aspects: the specific geometry of the scanner and its

Figure 1. Schematic front view and cross-section of an MRI-scanner.
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complex acoustic boundary conditions. As a first approximation, the geometry of
the scanner can be modelled as being axisymmetric. Secondly, the boundary
conditions can be approximated by assuming that only the gradient coil (duct wall)
can vibrate and thus radiate acoustic energy.

Modelling the acoustic behavior of the MRI scanner with rather general
techniques such as the three dimensional acoustic Boundary Element Method
(3d-BEM) is not feasible because of the huge computational requirements that are
involved, despite the model simplifications. A significant reduction in
computational effort can be realized by utilizing the so-called Fourier-BEM which
exploits the axisymmetric properties of the geometry without requiring
axisymmetric boundary conditions [3–5]. This is accomplished by using a Fourier
series expansion of the acoustic variables in circumferential direction and hence
reducing the dimensionality of the problem by one. But similar to the 3d-BEM,
it does not offer directly a relationship between design parameters for the
MRI-scanner (like the scanner’s inner radius, or its length) and its acoustic
response parameters (like inner-duct pressure or radiated power).

Increased insight and a further model reduction can be achieved if the central
part of the MRI scanner with its gradient coils can be approximated as a finite
duct (constant cross-section) with infinite flanges. This way, it is possible to use
duct acoustics theory which receives considerable attention in the basic acoustic
textbooks [6–9]. The theory presented in these books is, however, not sufficient
to model the MRI-scanner; it generally only deals with (semi-)infinite ducts and
a plane wave approximation for the acoustic field inside the duct.

To the authors’ knowledge, no studies have been reported in the literature
dealing with the duct acoustics of a finite duct with vibrating walls. Models
for the propagation and diffraction of sound inside semi-infinite and finite
ducts, have been reported (see, e.g., references [10–14]) but they were mainly
dealing with the radiation of (point) sources or only propagation of sound
inside hard-walled ducts, not with vibrating walls. Studies in the literature of
the sound radiation of cylinders with vibrating walls (see, e.g., references [15–20])
all deal with external radiation, not internal. Nevertheless, these models
were useful as they provided the building blocks for an accurate and efficient
acoustic model for the MRI scanner based on duct acoustics that will be presented
here.

The model for the radiation of sound inside a baffled finite duct with vibrating
walls, presented here, is an extension of the model presented by Doak [11] for the
radiation of sound by a distribution of sources inside a finite length hard-walled
duct with infinite flanges. The model’s impedance boundary conditions in the duct
at the flanges are handled with so-called reflection coefficients [12]. Special
attention was paid to the computational efficiency of the model and therefore an
alternative for computation of these reflection coefficients is presented. The
coupling between the reflection coefficients at the duct’s exists and the sound field
created in and propagated through the finite duct is expressed by two matrix
equations that need to be solved simultaneously or iteratively. The physical and
computational characteristics of the model and its applicability for the design of
an MRI scanner will be illustrated.



. . . .   .464

2. ACOUSTICS OF FINITE CYLINDRICAL DUCTS WITH PLANAR BAFFLES

The acoustic model for a finite duct with vibrating walls and infinite flanges will
be derived in this section. First, the general (infinite) duct acoustic theory that is
described in many textbooks (e.g., references [6–8]) will be reviewed briefly. Then,
step by step new features are introduced into the model, eventually leading to the
desired model. First, a model will be derived that describes the acoustic response
of the duct system due to a monopole source inside the duct wall. Then, it will
be shown that the description of the acoustic field caused by the vibrating wall
of the duct is a generalization of the monopole source model. At the end, the duct
acoustics model incorporating wall vibration is coupled with a model for the
reflection conditions for the baffle at the finite duct’s exits. This results in a general
model for the acoustics of finite cylindrical ducts with planar baffles and vibrating
walls.

2.1.     

Consider the sound field in an infinite cylindrical duct with radius r= a with
uniform sound speed c0 and density r0 in the acoustic medium. If only harmonic
solutions for the sound field are considered, the acoustic pressure and velocity in
the duct can be expressed as

p̃(r, u, z, t)=Re [p(r, u, z, v) eivt], ũ(r, u, z, t)=Re [u(r, u, z, v) eivt], (1)

with circular frequency v. This pressure field has to satisfy the Helmholtz,
continuity, state and momentum equations, and is subject to a normal velocity
boundary condition at the duct wall:

92p+ k2p=0, ivr+ r09 · u=0, (2, 3)

p= rc2
0, ir0vu+9p=0, ur =wall =−h(u, z), (4–6)

with free field wavenumber k=v/c0, ur the radial component of u, h the given duct
wall velocity, and in cylindrical co-ordinates
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2.2.       

When the sound field in a rigid infinite duct (h=0) is considered, the technique
of separation of variables can be used to try a solution of the kind p= f(r)g(u)h(z).
This solution exists if

12f
1r2 +

1
r

1f
1r

+0a2 −
m2

r2 1 f=0, (7a)

12g
1u2 +m2g=0,

12h
1z2 + (k2 − a2)h=0, (7b, c)

so that f(r)= Jm (ammr), m=1, 2, . . . , where Jm denotes the ordinary Bessel
function of the first kind and amm = j'mm /a the radial wavenumber where j'mm is the
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mth nonnegative non-trivial zero of J'm , to satisfy the boundary condition f'=r= a =0.
The Bessel function of the second kind Ym is also a solution of equation (7a), but
does not satisfy the condition at r=0 where the pressure and its derivative should
be finite. Also g(u)= e−imu, m=· · · , −2, −1, 0, 1, 2, . . . , where use is made of
the condition of continuity from u=2p to u=0. Finally, h(z)= e3kmmz, where
kmm =zk2 − a2

mm is the axial wavenumber, the square root being defined such that
Re (kmm )e 0 and Im (kmm )E 0. When at a certain free field wavenumber k, the
axial wavenumber kmm is real, the function h(z) is an oscillatory function, and the
corresponding acoustic wave is called cut-on. If kmm is imaginary, the function h(z)
is exponential and the associated wave is called cut-off.

The modes

p2
mm(r, u, z)= Jm (ammr) e−imu3 ikmmz (8)

form a complete basis [21] for the acoustic field in the duct (with the + and −
superscript denoting a wave travelling in the positive or negative z-direction,
respectively). Any field in the duct can thus be written by the principle of
superposition as the modal expansion

p(r, u, z)= s
a

m=−a
s
a

m=1

Jm (ammr) e−imu(Amm e−ikmmz +Bmm eikmmz). (9)

This modal expansion is the basis for general duct acoustics (see, e.g., references
[6–8]). The plane wave is a special form of this general case with the m=0, m=1
mode only.

2.3.            

Consider the field generated inside a rigid walled duct by a volume point source
with strength Q at location r= rs , u= us , z= zs defined by

ivr+ r09 · u= r0Qd(x− xs ), (10)

inside the duct (see Figure 2). The source strength distribution is given by

Qd(x− xs )=Qd(r− rs )d(z− zs )
1
rs

s
a

m=−a
d(u−2pm− us ). (11)

Figure 2. Acoustic source (W) at the wall of an infinite duct.
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From causality arguments the generated field should radiate away from the source.
A Fourier transformation technique will now be applied to obtain a solution for
the acoustic pressure and velocity field that are generated by the point source. A
source located on the duct wall rs = a, us =0, zs =0, can be represented by the
(generalized Fourier transformed) boundary condition (6) at the duct wall:

ur =r= a =
1

−ivr0

1p
1r br= a

=
−Q
a

d(z) s
a

m=−a
d(u−2pm)

=
−Q
a

1
2p g

a

−a

e−igz dg
1
2p

s
a

m=−a
e−imu. (12)

The solution of the wave equation (2) can be found by Fourier transformation in
z and Fourier series expansion in u of the pressure:

p(r, u, z)=g
a

−a

s
a

m=−a
p̂m (r, g) e−imu−igz dg, (13)

p̂m (r, g)=Am (g)Jm (a(g)r), a(g)2 = k2 − g2. (14, 15)

From the boundary condition (6) at r= a it follows that

aAmJ'm (aa)=−vr0Q/a4p2i, (16)

p(r, u, z)=
−kr0c0Q

4p2i
s
a

m=−a
e−imu g

a

−a

Jm (ar)
aaJ'm (aa)

e−igz dg. (17)

The residue integration method (see, e.g., reference [22], chapter 15), is applied to
compute the integral equation (17). To satisfy causality, the integration contour
is indented above the poles g= kmm and below the poles g=−kmm , and the contour
closed through the lower half plane for positive z and through the negative half
plane for negative z (see e.g., references [6, p. 17; 7, p. 652]). The solution can be
written as

p(r, u, z)=
r0c0

2p
s
a

m=−a
e−imu s

a

m=1

a2
mma2

a2
mma2 −m2

Jm (ammr)
Jm (amma)

kQ
kmma2 e−ikmm =z=, (18)

of which the plane wave component is

p(r, u, z)=
r0c0

2p

Q
a2 e−ikmm =z=.

This result is an expression for the acoustic impulse response of the infinite duct
valid for any non-resonant frequency (kmm $ 0). In the source plane z= zs =0, the
series for p is conditionally convergent. The series for the velocity u here is not
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convergent at all in the usual sense, but has to be interpreted as a generalized
function, as might be expected from the d-type source.

2.4.            

If a finite part (between −LE zEL) of the wall (at r= a) inside an infinite
duct is vibrating and radiating sound (see Figure 3), the velocity at the wall can
be described as

ur (a, u, z)=−h(u, z) for −LE zEL. (19)

For each frequency v, the solution of this problem can be found with the Fourier
transformation method analogous to the method described for the simple source
radiation. Again, from causality, the field should be outward radiating in =z=qL.
The boundary condition at the duct wall can again be written as a Fourier sum:

ur (r= a, u, z)=−
1

ivr0

1p
1r br= a

=−
1
2p

s
a

m=−a
e−imuhm (z)

=−
1

4p2 s
a

m=−a
e−imu g

a

−a

ĥm (g) e−igz dg, (20)

where the Fourier coefficients ĥm (g) of the wall velocity hm (u, z) are defined by

ĥm (g)=g
a

−a

eigz g
2p

0

h(u, z) eimu du dz=g
L

−L g
2p

0

h(u, z) eimu+igz du dz. (21)

For the pressure in the duct, the modal expansion as in equations (13)–(15) can
be used,

p(r, u, z)=g
a

−a

s
a

m=−a
p̂m (r, g) e−imu−igz dg,

with

p̂m (r, g)=Am (g)Jm (a(g)r), a(g)2 = k2 − g2.

Figure 3. Vibrating walls inside an infinite duct.
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Substituting this expansion in equation (20) for the boundary condition at the duct
wall results in

aAmJ'm (aa)=−
r0v

4p2i
ĥm , (22)

p(r, u, z)=−
kr0c0a
4p2i

s
a

m=−a
e−imu g

a

−a

Jm (ar)
aaJ'm (aa)

ĥm (g) e−igz dg

=−
kr0c0a
4p2i

s
a

m=−a
e−imu g

L

−L g
a

−a

Jm (ar)
aaJ'm (aa)

e−ig(z− z') dg hm (z') dz'. (23)

Similar to the ‘‘source in the hard walled duct’’ case, the integral in this equation
can be computed with the residue integration method since ĥm (g) is analytic
everywhere because it is defined as a finite integral. This results in

p(r, u, z)=
r0c0

2p
s
a

m=−a
e−imu s

a

m=1

a2
mma2

a2
mma2 −m2

Jm (ammr)
Jm (amma)

×
k

kmma g
L

−L

hm (z') e−ikmm =z− z'= dz',

(24)

valid for any non-resonance frequency (kmm $ 0). This result denotes the
convolution of the acoustic impulse response [equation (18)], and the
circumferential Fourier coefficients of the wall velocity hm (z). A bit confusing may
be the observation that the resulting series for the velocity ur appears to be a sum
of hard-wall modes. Since every term in the velocity series vanishes at the wall,
it might seem that the series also vanishes at the wall, in contrast to the boundary
condition! This is, however, only pointwise, because the series does not converge
uniformly near r= a (see e.g., reference [22], chapter 14). In any neighborhood
of r= a the series behaves according to the boundary condition. Furthermore, an
order of magnitude estimate of the terms of the series shows that the series for
p converges absolutely, and for ur converges conditionally.

2.5.         

The radiation from the walls of a finite duct terminating in rigid baffles (see
Figure 4) is considerably more complex than the former three situations. This is
caused by the ‘‘ interface’’ impedances at the duct’s exits. An acoustic wave that
is incident to the plane of termination of the duct in a rigid baffle is partly
transmitted and partly reflected. The reflection is rather complex because there
generally is coupling between the radial modes of the incident and reflected
acoustic field. Zorumski [12] has described a method to compute the generalized
radiation impedances and reflection coefficients of circular ducts. This is needed
to impose the boundary conditions for the sound radiation model for baffled finite
ducts. It will be shown that the model for the radiation of a vibrating wall in an
infinite duct can be combined with the reflection coefficients to impose the
boundary conditions at the duct’s exits.
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Figure 4. Vibrating walls inside a baffled finite duct.

2.5.1. Generalized radiation impedances

Consider the radiation of sound from a circular duct terminating in a planar
baffle (infinite flange). The pressure and axial velocity at the duct exit (with
z= ze =2L, as in Figure 4) can be written as a complete sum of eigenmodes in
radial r and circumferential u direction is (equation (9)),

p(r, u, ze )= s
a

m=−a
e−imu s

a

m=1

PmmJm (ammr), (25)

uz (r, u, ze )=
1

r0c0
s
a

m=−a
e−imu s

a

m=1

VmmJm (ammr), (26)

with modal coefficients Pmm and Vmm for the pressure and velocity, respectively.
Zorumski [12] has shown that these coefficients are coupled by so-called
generalized radiation impedances (see Appendix A)

Pmm = s
a

n=1

ZmmnVmn , (27)

where m is the radial order of the incident mode, n is the radial order of the reflected
mode, and

Zmmn =
1

N2
mm g

a

0

t

z1− t2
Dmm (t)Dmn (t) dt, (28)

N2
mm = 1

2(a
2 −m2/a2

mm)Jm (amma)2, (29)

Dmm (t)=
tk2a

a2
mm − t2k2 J'm (tka)Jm (amma). (30)
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Equation (27) shows that energy from a single incident radial mode is transferred
into all reflected (and transmitted) radial modes. Because of the oscillatory nature
of the integrand in equation (28) the evaluation of this integral is not
straightforward. This is discussed in Appendix B.

2.5.2. Accounting for planar baffles in a finite duct

The problem of a vibrating duct wall that radiates sound into a finite duct
terminating in planar baffles is an extension of the problem of a vibrating wall in
an infinite duct. The baffle interface acts as an additional generalized impedance
in the duct, where incident waves are partly transmitted and partly reflected. The
total solution for the pressure has to satisfy both the boundary conditions at the
duct wall and at the interface at the duct’s exits. Since the boundary conditions
at the wall are similar for the finite and infinite duct problems it is convenient to
use this solution (denoted as p') and adding to this solution a homogeneous
solution, i.e., a general duct acoustic pressure field p0 with vanishing velocity at
the wall. This is possible because the equations are linear.

The pressure in the finite duct can be written as

p(r, u, z)= p'(r, u, z)+ p0(r, u, z), (31)

with

p'(r, u, z)=
r0c0

2p
s
a

m=−a
e−imu s

a

m=1

a2
mma2

a2
mma2 −m2

Jm (ammr)
Jm (amma)

×
k

kmma g
L

−L

hm (z') e−ikmm =z− z'= dz', (32)

p0(r, u, z)= s
a

m=−a
s
a

m=1

Jm (ammr) e−imu(A0mm e−ikmmz +B0mm eikmmz), (33)

where (a2
mma2)/(a2

mma2 −m2)=1 if m=0, m=1. The total pressure p has to satisfy
the boundary condition

1p
1r br= a

=
1

1r
(p'+ p0)=r= a =−ivr0ur (r= a, u, z). (34)

The pressure field p' already satisfies this boundary condition as defined in
equation (20), thus, for p0 the following boundary condition must hold:

1p0
1r br= a

=0. (35)

Since every term in the series of p0 satisfies this condition, it will be satisfied by
the infinite sum if the series converges uniformly (for example if the series consists
of a finite number of terms). This is a rather subtle point because p' is a series
of the same form as p0, but 1p'/1r does not converge uniformly. Therefore, the
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uniform convergence condition for p0 is essential for the split-up of p, but appears
to be satisfied in practice. Hence, the sound field that is generated in the finite duct
is a superposition of the sound field generated by the vibrating walls in an infinite
duct and the homogeneous sound field satisfying the velocity boundary condition
ur =0 at r= a. The modal coefficients A0mm and B0mm will be determined by the
condition that the total solution has to satisfy the reflection boundary conditions
at the duct’s exits (z=2L). The total acoustic pressure can thus be written as

p(r, u, z)= s
a

m=−a
s
a

m=1

Jm (ammr) e−imu(Amm (z) e−ikmmz +Bmm (z) eikmmz), (36)

with

Amm (z)=A0mm +
a2

mma2

a2
mma2 −m2

1
Jm (amma)

r0c0k
2pakmm g

z

−L

hm (z') eikmmz' dz', (37a)

Bmm (z)=B0mm +
a2

mma2

a2
mma2 −m2

1
Jm (amma)

r0c0k
2pakmm g

L

z

hm (z') e−ikmmz' dz'. (37b)

At the interface, the generalized impedances defined in the previous section can
be used to obtain a relationship between the modal coefficients of the pressure and
velocity at the duct’s exits. The value of the pressure, velocity and their modal
coefficients at interfaces 1 and 2 in Figure 4 are identified by superscripts 1 and
2. At interface 1, p' can be written as

p'(r, u, z=−L)= p'1 = s
a

m=−a
s
a

m=1

Jm (ammr) e−imu(H1
mm e−ikmmL), (38)

with

H1
mm =

a2
mma2

a2
mma2 −m2

1
Jm (amma)

r0c0k
2pakmm g

L

−L

hm (z') e−ikmmz' dz'. (39)

Thus, the total pressure p at interface 1 is given by

p(r, u, z=−L)= p1 = s
a

m=−a

s
a

m=1

Jm (ammr) e−imu(A0mm eikmmL +(H1
mm +B0mm ) e−ikmmL).

(40)

The axial velocity uz (r, u, z) in the negative z direction can be written as

uz (r, u, z=−L)= u1
z =

1
ivr0

1p
1z bz=−L

= s
a

m=−a

s
a

n=1

Jm (amnr) e−imu
kmn

vr0
(A0mn eikmnL −(H1

mn +B0mn ) e−ikmnL). (41)
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The coefficients of the pressure and axial velocity at interface 1 from equations
(25) and (26), respectively, can be written as

P1
mm =A0mm eikmmL +(H1

mm +B0mm ) e−ikmmL, (42)

V1
mn =

kmn

k
(−A0mn eikmnL +(H1

mn +B0mn ) e−ikmnL). (43)

These expressions can be sutstituted into equation (27) (which is allowed because
the boundary conditions at the duct wall for p' and p0 both satisfy J'(amma)=0).
This substitution gives

A0mm eikmmL +(H1
mm +B0mm ) e−ikmmL = s

a

n=1

Z1
mmn

kmn

k
[(H1

mn +B0mn ) e−ikmnL −A0mn eikmnL],

(44)

or

s
a

n=1 0Z1
mmn

kmn

k
+ dmn1A0mn eikmnL = s

a

n=1 0Z1
mmn

kmn

k
− dmn1(H1

mn +B0mn ) e−ikmnL. (45)

Upon introducing the variable

Emn (z)= e−ikmnz, (46)

equation (45) can be written as

Emn (−L)A0mn = s
a

n=1

R1
mmnEmm (L)(B0mm +H1

mn), for 6m=0, 21, 22, . . .
m= 1, 2, 3, . . .

. (47)

The terms R1
mmn are the reflection coefficients that can be related to the modal

impedance Z1
mmn by the following infinite matrix equation. For a given azimuthal

order m, the reflection coefficient R1
mmn is element (m, n) of reflection matrix R1

m at
interface 1:

R1
m =[Z1

mKm + I]−1[Z1
mKm − I], (48)

where I is the identity matrix, and Km is a diagonal matrix which is, for fixed
azimuthal order m, given by

km1/k 0 · · · 0 · · ·

0 km2/k · · · 0 · · ·

Km = ···
···

· · ·
···

··· . (49)G
G

G

G

G

K

k

G
G

G

G

G

L

l
0 0 · · · kmn /k · · ·
···

··· · · · ···
· · ·
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Because m is fixed, K is only valid for one value of the azimuthal order at a time,
and generally will be different for each value of m. Here n is the radial order of
the reflected modes, where 1E nEa. The (generally non-symmetric) matrix of
reflection coefficients is defined as

R1
m11 R1

m12 · · · R1
m1n · · ·

R1
m21 R1

m22 · · · R1
m2n · · ·

R1
m = ···

···
· · ·

···
··· , (50)G

G

G

G

G

K

k

G
G

G

G

G

L

l
R1

mm1 R1
mm2 · · · R1

mmn · · ·
···

··· · · · ···
· · ·

where the impedance matrix is given by

Z1
m11 Z1

m12 · · · Z1
m1n · · ·

Z1
m21 Z1

m22 · · · Z1
m2n · · ·

Z1
m = ···

···
· · ·

···
··· . (51)G

G

G

G

G

K

k

G
G

G

G

G

L

l
Z1

mm1 Z1
mm2 · · · Z1

mmn · · ·
···

··· · · · ···
· · ·

Expression (47) for the reflection at interface 1 can be written as a matrix equation,

Em (−L)am =R1
mEm (L)(bm + h1

m), (52)

with

e−ikm1z 0 · · · 0 · · ·

0 e−ikm2z · · · 0 · · ·

Em (z)= ···
···

· · ·
···

··· , (53)G
G

G

G

G

K

k

G
G

G

G

G

L

l
0 0 · · · e−ikmnz · · ·
···

··· · · · ···
· · ·

and

am =[A0m1 A0m2 · · · A0mn · · ·]T, (54)

bm =[B0m1 B0m2 · · · B0mn · · ·]T, (55)

h1
m =[H1

m1 H1
m2 · · · H1

mn · · ·]T. (56)

Similarly, at interface 2 the matrix equation

Em (−L)bm =R2
mEm (L)(am + h2

m), (57)

can be derived, with

R2
m =[Z2

mKm + I]−1[Z2
mKm − I]. (58)
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3. NUMERICAL IMPLEMENTATION

The matrices in equations (52) and (57) are infinite in size and can therefore not
be readily manipulated numerically. In general the infinite matrices are truncated
to a maximum n=N, and a set of 2N equations with 2N unknowns (the elements
of am and bm ) is obtained for every azimuthal order m. When this system is solved
an explicit (approximate) expression for p0 is obtained and this leads to a closed
form solution for the total pressure,

p(r, u, z)= s
a

m=−a
s
N

m=1

Jm (ammr) e−imu(Amm (z) e−ikmmz +Bmm (z) eikmmz), (59)

with amplitudes Amm (z) and Bmm (z) as in equation (37). After truncation there
remain two problems to be solved: calculation of the integrals in equation (37);
solving the coupled truncated matrix equations (52) and (57). The implementation
details of a solution of these problems will be presented next.

3.1.   

In order to use the proposed formulation for the pressure in a finite (planar)
baffled duct, the convolution between the Fourier coefficients (with respect to the
circumferential direction) of the wall velocity hm (z) and the function e−ikmm =z= needs
to be computed:

I=g
L

−L

hm (z') e−ikmm =z− z'= dz'. (60)

This integral has to be computed for every circumferential mode m and every
radial mode m. The integral can be split into the ranges [−L, z] and [z, L]. Then
the absolute value operator in the exponential function can be removed:

I=g
z

−L

hm (z') e−ikmm (z− z') dz'+g
L

z

hm (z') e−ikmm (z'− z) dz'. (61)

Since both integrals are bounded for all z, numerical integration is rather
straightforward. When kmm is real, the duct wall normal velocity is multiplied with
an oscillating function yielding a oscillating integrand. Therefore, the trapezoidal
rule or Romberg integration should be used because these methods have a better
convergence than Gauss-Legendre integration for oscillating integrands. When kmm

is imaginary (and thus negative), the normal velocity is multiplied with an
exponentially decaying function, yielding an exponentially decaying integrand.
This type of integrand can also be integrated efficiently with the trapezoidal rule
or Romberg integration.

3.2.   

After truncation of matrix equations (52) and (57), the coupled matrix equations

R1E(L)(a+ h1)=E(−L)b, R2E(L)(b+ h2)=E(−L)a, (62a, b)
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(where subscript m has been suppressed for clarity) need to be solved
simultaneously to obtain values for the amplitudes A0mm and B0mm , which are the
elements of vectors a and b, respectively. The main problem in obtaining this
solution are the low condition numbers of matrices R1, R2 and E(2L), so the
solution of the system is not straightforward.

Since both ends of the duct are simlar (but mirrored), the reflection behavior
of the sound waves is also similar. Therefore the reflection matrices at both ends
are the same: R1 =R2 =R. Equations (62a) and (62b) are then added up and
r+ = a+ b is introduced, to obtain

[I−E(L)RE(L)]r+ =E(L)RE(L)[h2 + h1]. (63a)

Equation (62b) subtracted from equation (62a) and introducing r− = a− b yields

[I+E(L)RE(L)]r− =E(L)RE(L)[h2 − h1]. (63b)

Both equations can now be solved separately for r+ and r−. The vectors a and b
are simply related to these vectors:

a= 1
2(r+ + r−), b= 1

2(r+ − r−). (64a, b)

Using this solution strategy is advantageous over direct substitution of equation
(62b) in equation (62a), because in that case the matrix product E(L)2 is introduced
which leads to numerical underflow errors for large values of L.

The coupled matrix equations (62) can also be solved iteratively by using the
recurrent relationship

ai+1 =E(L)RE(L)[bi + h1], bi+1 =E(L)RE(L)[ai + h2], (65a, b)

and starting the recursion with a0 = 0, b0 = 0. A good measure for the convergence
of the iteration is the relative difference in the acoustic power radiated out of the
baffled duct between two subsequent iterations (see Appendix C for the power
relations).

4. NUMERICAL EXPERIMENTS AND RESULTS

To explore the characteristics of the presented baffled duct (BD) model, a
number of numerical experiments were performed. The model was compared with
an analogous configuration implemented in an acoustic Fourier Boundary
Element Method (FBEM) model with the program bArd [23]. This was done to
investigate its applicability for modelling the acoustic response of an MRI-scanner.
Secondly, the ‘‘internal’’ characteristics of the BD model were investigated with
a parameter study, in which the truncation of the Fourier–Bessel series [equation
(59)] was varied.

4.1.     

The baffled duct model that was used in the numerical experiments consists of
a duct with half length L=1 m and radius a=0·5 m. The Fourier BEM model
that was used for comparison can be viewed as a thick walled version of a duct
with the same length and radius as the baffled duct model. In three distinct versions
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Figure 5. Duct model for FBEM calculations.

of the BEM model the duct’s outer radius was taken as A=0·75 m, A=1·0 m,
and A=5·0 m, respectively (see Figure 5).

To assess the applicability of the baffled duct model as an alternative to the
FBEM model, the acoustic response of the BD model was computed at 23
frequencies in the range 90–1100 Hz. The velocity boundary condition at the wall
inside the duct was defined as a half sine function for all frequencies,

ur (a, u, z)= ua cos (zp/2L) cos (mu),

with ua =10−4 m/s arbitrarily chosen. Three circumferential harmonic numbers
m=0, 1, 2 were used in the calculations. The infinite Fourier–Bessel series in the
baffled duct formulation was truncated at N=30 terms. The acoustic responses
of the three FBEM models with varying thicknesses, subjected to the same
boundary conditions inside the duct, were also computed. The outer wall of the
duct was modelled as rigid. For all models, the values for speed of sound and
density of the air were taken as c=343 m/s, and r=1·21 kg/m3.

The BD and FBEM models are compared for both radiated acoustic power and
average acoustic wall pressure amplitude. The radiated power is a measure for the
farfield response, while the average amplitude of the wall pressure is a measure
for the near field response of the models. The results for these quantities for
harmonics 0, 1 and 2 are shown in Figures 6, 7 and 8. The pressure difference is
defined as the difference between average pressure amplitude of the FBEM model
and the BD model (A=a) and is also shown in Figures 6, 7 and 8.

The radiated power spectra of the FBEM models closely resemble the spectrum
for the BD model. The spectra deviate only for relatively low frequencies. As could
have been anticipated, the upper limit of the low frequency range is the frequency
where the acoustic wavelength (l= c/f ) is of the same order as the outer radius
of the duct in the BEM model. Above this frequency (450, 340 and 70 Hz for
respectively A=0·75, 1 and 5 m), the acoustic field in the duct ‘‘sees’’ the duct
as having infinite flanges.

The average wall pressure amplitude results for the FBEM duct models
correspond very well to the results of the BD duct model. The correspondence is
even better than the resemblance for the power results, especially in the low
frequency range. This means that the near field in the duct is rather insensitive to
the boundary conditions at the outside of the duct. The pressure difference results
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Figure 6. Acoustic responses for circumferential harmonic m=0 for different outer radii.
Half-sine excitation. A values: –––, 0·75; · – · – · , 1·0; ——, 5·0; w——w, a.

show that the maximum difference in near field pressure is at most approximately
1 dB. Furthermore, it is noticed that the pressure differences manifest themselves
mainly for low average pressure amplitute values, which are of lesser importance
in the MRI design process. In the high frequency region, the pressure differences
between the three BEM models and the BD model evince identical behavior, so
it is expected that these pressure differences can be attributed to the intrinsic
differences between FBEM and BD models, rather than to the geometric
differences.
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It can be concluded that the BD model is a sufficiently accurate approximation
for a thick-walled duct with inner wall vibration with an outer radius larger than
A=0·75 m.

4.2.      

The influence of the truncation of the Fourier–Bessel series in equation (59) on
the response of the baffled duct model was assessed. To that end, the number of
terms in the series N was varied: N=5, 10, 30 and 50. As a reference, these results
were compared with the results of the FBEM model with outer radius A=5·0 m.
The acoustic response computed with these parameters is depicted in Figures 9,
10 and 11. The pressure difference is now defined as the difference between the
average wall pressure amplitude of the BD model and the average wall pressure
amplitude of the FBEM model.

The results for the radiated acoustic power as a function of the frequency
indicate that a good approximation can be made with only five modes in the

Figure 7. As Figure 6 but for m=1.
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Figure 8. As Figure 6 but for m=2.

Fourier–Bessel series. This is due to the fact that radiated power is associated with
cut-on (i.e., propagating) modes of the acoustic field. A mode is cut-on (i.e., can
propagate) if the excitation frequency is above the mode’s cut-on frequency
f c

mm 0 j'mmc/(2pa). If all cut-on modes are taken into account, the approximation of
the radiated power will be good. In these simulations, the maximum Helmholtz
number was ka=10, which means that at most three cut-on modes (per Fourier

T 1

Cut-on frequencies f c
mm in Hz for acoustic duct modes

m=1 m=2 m=3 m=4

m=0 0 418 766 1111
m=1 201 582 932
m=2 333 732 1088
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Figure 9. Acoustic responses for circumferential harmonic O for different N. Half-sine excitation.
N values: · · · · , 5; –––, 10; · – · – · , 30; ——, 50; w——w, FBEM.

harmonic m) were present in the acoustic field (see Table 1). This means that the
computed values for the radiated power are accurate.

The results for the average pressure amplitude at the duct wall are approximated
good at high pressure values, compared with the FBEM results. However, the
differences at low pressure values are considerable, especially when only a few
Fourier–Bessel modes are taken into account. For this model, this indicates that
high pressure amplitude and radiated power values are associated with wall
vibration energy being transferred to cut-on duct modes, whereas low pressure
amplitude and power values are associated with vibration energy being transferred
to cut-off duct modes. It is anticipated that the differences can be further
minimized when the number of modes is further increased. Unfortunately, the
number of modes cannot be increased infinitely because of numerical overflow and
underflow errors that occur in vectors h1 and h2 for large N and consequently large
values of the product kmmz.
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5. DISCUSSION

5.1.  

So-called cut-on effects dominate the acoustics of baffled finite ducts. The
distinct peaks in the power and pressure spectra, located just above the cut-on
frequencies of the duct are a consequence of these effects (see Figures 6–11). The
cut-on peaks are caused by the large value of the ‘‘self’’ reflection coefficient Rmmm

of a certain duct mode (m, m) just above its cut-on frequency. A propagating duct
mode that is incident on the duct exit will almost completely be reflected because
its reflection coefficient is near one. Therefore, acoustic energy that is radiated by
the duct wall will build up inside the duct, much as in a closed system at resonance.
This will increase the pressure at the duct wall and the net effect of that is an
increase of the radiated acoustic power. This is the cause for high values for both
power and average wall pressure amplitude near the cut-on frequencies of the duct.
This insight can be directly attributed to the mathematics of the presented model;
it would have been impossible to obtain it from just the FBEM model.

5.2.  

A pleasant additional property of the presented model is its numerical efficiency
compared with Fourier BEM models. The computation times for both methods
are dominated by the matrix assembly process. This means that if n is the number
of degrees of freedom for the model, the total computational cost is of order o(n2).
For the Fourier BEM model, n is the number of nodes, and for the baffled duct
number n is the number of terms in the Fourier–Bessel series (N). Thus when N
was increased, the computation time increased quadratically. When with constant
N the Fourier harmonic number m was increased, the computation time remained
almost constant. For the baffled duct model this means that the computational
effort per matrix element is (for both methods) rather insensible on the Fourier
harmonic number m or the total number of Bessel modes N.

In general, the number of degrees of freedom for a Fourier BEM model (i.e.,
the number of nodes) increases faster than the number of degrees of freedom for
the baffled duct model (i.e., the number of terms in the Fourier–Bessel series N).
When the frequency range of interest is doubled, the number of nodes for the
FBEM model also needs to be doubled to obtain the same accuracy of the results.
For the baffled duct model one needs only to incorporate a few more terms in the
series; an additional term for every mode that was cut-off in the old frequency
range and is now cut-on. This means that the computational cost will increase
faster for the Fourier BEM models.

For the power radiation, an accurate approximation can be obtained with only
five terms in the Fourier–Bessel series, for the baffled duct model. The
approximation with five terms is almost indifferentiable from the power
approximations with more terms (top graphs of Figures 9–11). For the near field
pressure in the duct, the peak pressures are also approximated well with only five
terms in the series. Considerable differences between the pressure results of the BD
and FBEM model are only present for absolute pressure values which are at least
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Figure 10. As Figure 9 but for m=1.

25 dB below the peak pressure value, which are of lesser importance for the
MRI-scanner design. This means that five terms suffice in the series of the baffled
duct model when it is used for the design of the MRI scanner. Compared with
the Fourier BEM model with A=1 m, the five-term baffled duct model is about
15 times faster (average cpu-time per frequency, BD: 1·5 s, FBEM: 23·0 s).

6. CONCLUSIONS

A semi-analytic model for the radiation of baffled finite ducts with vibrating
walls has been presented. This model can be used for the simulation of the acoustic
response of MRI scanners. The acoustic response of the baffled duct models for
the MRI scanner was found to be in good agreement with the response of the
Fourier BEM MRI scanner models.
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Figure 11. As Figure 9 but for m=2.

The baffled duct models have two important advantages over Fourier BEM
models for the design modelling of MRI scanners. First, they offer directly the
relationship between important design parameters of the scanner and its acoustic
response. Second, computations with the baffled duct model are about 15 times
faster than computations with the Fourier BEM model, which in turn are
approximately 40–500 times faster than models with commercially available
three-dimensional BEM codes [e.g., reference 24].
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APPENDIX A: GENERALIZED RADIATION IMPEDANCES

The pressure and velocity at the exit of a finite duct that terminates in an infinite
flange can be written as (see section 2.5.1)

p(re , ue , ze )= s
a

m=−a
e−imue s

a

m=1

PmmJm (ammre ), (A1)

uz (re , ue , ze )=
1

r0c0
s
a

m=−a
e−imue s

a

m=1

VmmJm (ammre ), (A2)

with co-ordinates xe =(re , ue , ze ) for a point a the duct’s exit. The pressure at a
point x=(r, u, z) outside the duct (zE−L or zeL) is given by the Rayleigh
integral which depends on the (axial) velocity at the duct exit,

p(x)=
ir0v

2p gSe

uz (xe )
e−ikR(x,xe )

R(x, xe )
dS, (A3)

where

R(x, xe )= >x− xe>=[r2 + r2
e −2rre cos (u− ue )+ (z− ze )2]

1
2 (A4)

is the distance between the point outside the duct and a point in the duct’s exit,
and Se is the cross-section of the duct’s exit. The expression for uz (xe ) from
equation (A2) can be substituted into the Rayleigh integral to obtain

p(r, u, z)=
ik
2p g

2p

0 g
a

0

s
a

m=−a
e−imue s

a

m=1

VmmJm (ammre )
e−ikR

R
re dre due . (A5)

For further manipulation it is convenient to eliminate the function of R in equation
(A5). Sonine’s infinite integral [21, p. 416, equation (4), with Im (z1− t2)E 0 and
the complex integration contour passes above the real axis], is introduced:

e−ikR

−ikR
=g

a

0

t

z1− t2
J0(tkR) dt. (A6)

The Bessel function in equation (A6) may be replaced, at the duct’s exit (z= ze

and thus R=R(r, u, re , ue )), by use of Neumann’s addition theorem [21, p. 358,
equation (1)]:

J0(tkR)= s
a

m=−a
Jm (tkr)Jm (tkre ) e−im(u− ue ). (A7)

Substituting equation (A7) in equation (A6) results in

e−ikR

R
=−ik s

a

m=−a
e−im(u− ue ) g

a

0

t

z1− t2
Jm (tkr)Jm (tkre ) dt. (A8)
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With this result, equation (A5) (at z= ze ) can now be expressed as

p(r, u, ze )= k s
a

m=−a
e−imu s

a

m=1

Vmm g
a

0

t

z1− t2
Jm (tkr)Dmm (t) dt, (A9)

where the integration over angle ue has been performed and function Dmm (t) is
given by

Dmm (t)= k g
a

0

Jm (tkr)Jm (ammr)r dr. (A10)

The integral Dmm (t) may be evaluated directly [21, p. 134, equation (8)]:

Dmm (t)=
tk2a

t2k2 − a2
mm

J'm (tka)Jm (amma). (A11)

Equation (A1) can now be equated to equation (A9) to obtain

s
a

m=−a
e−imu s

a

m=1

PmmJm (ammr)= k s
a

n=−a
e−inu s

a

n=1

Vnn g
a

0

t

z1− t2
Jn (tkr)Dnn (t) dt.

(A12)
Multiplying both sides of this equation by eipuJp (apjr) and integrating over the duct
cross-section while exchanging the summation and integration operators gives

s
a

m=−a
s
a

m=1

Pmm g
2p

0 g
a

0

Jm (ammr) e−imuJp (apjr) eipur dr du

= k s
a

n=−a
s
a

n=1

Vnn g
a

0

t

z1− t2 g
2p

0 g
a

0

Jn (tkr) e−inuJp (apjr) eipur dr du Dnn (t) dt.

(A13)

The orthogonality property for the modes in radial and circumferential direction
gives for the left side of equation (A13) (where amm and apj are zeros of J'm (aa),
J'p (aa), respectively:

g
2p

0 g
a

0

Jm (ammr) e−imuJp (apjr) eipur dr du

= dmpdmjp(a2 −m2/a2
mm)Jm (amma)2

= dmpdmj2pN2
mm for m=0, 21, 22, . . . , and for m=1, 2, . . . . (A14)
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The amplitudes of each pressure mode at the duct’s exit are then given by

Pmm =
k

N2
mm

s
a

n=1

Vmn g
a

0

t

z1− t2 g
a

0

Jm (tkr)Jm (ammr)r dr Dmn (t) dt,

which can be further simplified by using the definition for Dmm (t) to obtain

Pmm = s
a

n=1

Vmn

N2
mm g

a

0

t

z1− t2
Dmm (t)Dmn (t) dt. (A15)

Equation (A15) may be used to express the modal impedance given by

Pmm = s
a

n=1

ZmmnVmn , for m=0, 21, 22, . . . , and for m=1, 2, . . . , (A16)

where

Zmmn =
1

N2
mm g

a

0

t

z1− t2
Dmm (t)Dmn (t) dt, (A17)

and the boundary conditions are satisfied such that J'(amma)=0.

APPENDIX B: COMPUTATION OF GENERALIZED RADIATION IMPEDANCES

To compute the integral in equation (A17), Zorumski [12] suggested splitting
up the integration range in a part t$ [0, 1] and t$ [1, a]. By using change of
variables t=sin f for the first range and t=cosh c for the second, the expression
for the generalized modal impedance becomes

Zmmn =
1

N2
mm g

1
2
p

0

sin fDmm (sin f)Dmn (sin f) df

+
i

N2
mm g

a

0

cosh cDmm (cosh c)Dmn (cosh c) dc. (B1)

At first sight this seems to be an elegant solution since the integral is split up in
a real and imaginary part, and the singularity for t=1 has been removed by the
transformation. However, because of the oscillatory nature of the function Dmm (t),
numerical evaluation of the integral is very expensive. To make things worse, the
oscillatory behavior of the integrand is blown up by the cosh (c) argument of the
function Dmm (t). In brief, the transformations suggested by Zorumski [12] do not
offer a numerically workable expression for the generalized radiation impedances
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and therefore an alternative, numerically more attractive expression will be derived
here.

For further manipulation it is convenient to write out Zmmn as

Zmmn =
2a2

mma2Jm (amna)
(a2

mma2 −m2)Jm (amma) g
a

0

t3J'm (tka)2

z1− t20t2 −
a2

mm

k2 10t2 −
a2

mn

k21
dt. (B2)

Note that J'm (tka)/(t2 − a2
mm/k2) is analytic (even at t= amm /k). Equation (B2) can be

rewritten to

Zmmn =Emmn g
a

0

Fmmn (t)[H(1)'
m (tka)+H(2)'

m (tka)] dt, (B3)

with Hankel functions

H(1)
m (x)= Jm (x)+ iYm (x), H(2)

m (x)= Jm (x)− iYm (x), (B4, B5)

Emmn =2a2
mma2Jm (amna)/(a2

mma2 −m2)Jm (amma), (B6)

and

Fmmn (t)=
1
2

t3

z1− t2

1
(t+ amm /k)(t+ amn /k)

J'm (tka)
(t− amm /k)(t− amn /k)

. (B7)

The function Fmmn (t) is analytic, except for the case m= n when the poles coincide.
Rewriting equation (B3) yields

Zmmn =Emmn$+g
a

0

Fmmn (t)H(1)'
m (tka) dt+ +g

a

0

Fmmn (t)H(2)'
m (tka) dt% (B8)

=Emmn [Z(1)
mmn +Z(2)

mmn], (B9)

where +f denotes that the integration path is deformed and passes above the pole
t= amm /k for m= n. These integrals can be computed by using contour
deformation in the complex plane. With the help of the equations

H(1)'
m (ix)=

2
p

(−i)m+2K'm (x), arg (x)$(−p, 1
2p], (B10)

H(2)'
m (−ix)=

2
p

(i)m+2K'm (x), arg (x)$(−1
2p, p], (B11)
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with the modified Hankel function

Km (x)=6 1
2pim+1H(1)

m (ix),
1
2pim+1H(1)

m (ix)−2pi(−1)mIm (x),
arg (x)$(−p, 1

2p]
arg (x)$(1

2p, p] 7 (B12)

=6 1
2p(−i)m+1H(2)

m (−ix),
1
2p(−i)m+1H(2)

m (−ix)+2pi(−1)mIm (x),
arg (x)$(−1

2p, p]
arg (x)$(−p, −1

2p]7, (B13)

and with the modified Bessel function of the first kind

Im (x)= i−mJm (ix), (B14)

the components of equation (B9) can be written as

Z(1)
mmn =g

a

0

Fmmn (it)
2
p

(−i)m+1K'm (tka) dt, (B15)

Z(2)
mmn =2 g

1

0

Fmmn (t)H(2)'
m (tka) dt+g

a

0

Fmmn (−it)
2
p

im+1K'm (tka) dt

+ dmn2pi Res
t= amm/k

Fmmm (t)H(2)'
m (tka). (B16)

Combining these terms yields

Zmmn =2Emmn$g
1

0

Fmmn (t)H(2)'
m (tka) dt+

i
p g

a

0

t3I'm (tka)K'm (tka)

z1+ t20t2 +
a2

mm

k2 10t2 +
a2

mn

k21
dt

+ dmnpi Res
t= amm/k

Fmmm (t)H(2)'
m (tka)%. (B17)

The singularity in Fmmn (t) for t=1 in equation (B17) can be removed by
substituting t=sin (u):

g
1

0

t3

2z1− t2

J'm (tka)H(2)'
m (tka)

(t2 − a2
mm/k2)(t2 − a2

mn/k2)
dt

=g
1
2
p

0

sin3 (u)J'm (sin (u)ka)H(2)'
m (sin (u)ka)

2(sin2 (u)− a2
mm/k2)(sin2 (u)− a2

mn/k2)
du. (B18)
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The infinite integral in equation (B17) can be transformed to two finite integrals
by splitting the integration interval [0, a] into [0, 1] and [1, a] and using the
substitution t=1/t for the second interval:

g
a

0

t3I'm (tka)K'm (tka)

z1+ t20t2 +
a2

mm

k2 10t2 +
a2

mn

k21
dt=g

1

0

t3I'm (tka)K'm (tka)

z1+ t20t2 +
a2

mm

k2 10t2 +
a2

mn

k21
dt

+g
1

0

I'm (ka/t)K'm (ka/t)

zt2 +101+
a2

mmt2

k2 101+
a2

mnt2

k2 1
dt. (B19)

With limits

lim
x:0

x2I'm (x)K'm (x)=6−1
2x

2

−1
2n

for m=0
for me 1

, lim
x:a

I'm (x)K'm (x)=0,

(B20, B21)

it can be shown that the first integrand approaches zero for t:0, and that the
second integrand also approaches zero for t:0.

When m= n the residue at pole t= amm = amn has to be taken into account. Four
cases can be distinguished: (1) the pole is not on the branch of 1/z1− t2; (2) the
pole lies on the branch of 1/z1− t2, but not in 0 or 1; (3) the pole lies at t=0;
(4) the pole lies at t=1.

In case (1) tq 1 or amm /k= amn /kq 1. This means that the free field
wavenumber k is smaller than radial wavenumber amm , in other words, the mode
is cut-off (evanescent). The residue at this pole is

Res
t= amm/k

EmmmFmmm (t)H(2)'
m (tka)=

Emmm (a2
mma2 −m2)

4pa2
mma2z(amm /k)2 −1

. (B22)

In case (2) 0Q tQ 1 or 0Q amm /kQ 1 the pole lies on the branch of 1/z1− t2.
This means that the free field wavenumber k is larger than radial wavenumber amm ,
in other words, the mode is cut-on (propagating). The pole is not inside the
integration contour, and it can be shown that it has no contribution to the modal
impedance. However, the finite integral in equation (B17) must then be interpreted
as a Cauchy Principal Value integral:

Zmmm =2Emmm&CPV g
1

0

Fmmm (t)H(2)'
m (tka) dt+

i
p g

a

0

t3I'm (tka)K'm (tka)

z1+ t20t2 +
a2

mm

k2 1
2 dt'.

(B23)
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In case (3) the pole lies on t= amm /k=0. This can happen only for the plane
wave mode (m=0, m= n=1 and a01 =0). The modal impedance is then defined
as

Z011 =2E011 g
a

0

J2
1(tka)

2tz1− t2
dt. (B24)

The identity J1(x)= 1
2[H

(1)
1 (x)+H(2)

1 (x)] is used to transform the integral in
equation (B24) into

Z011 =E011 lim
e:0 $g

a

e

J1(tka)H(1)
1 (tka)

2tz1− t2
dt+g

a

e

J1(tka)H(2)
1 (tka)

2tz1− t2
dt%. (B25)

Deformation of the complex integration path similar to the derivation used for
equation (B9) can be used. It can be shown that the pole at t=0 has no
contribution. The resulting expression for the modal ‘‘self’’ impedance of the plane
wave,

Z011 =2E011 lim
e:0 $2 g

1

e

J1(tka)H(2)
1 (tka)

2tz1− t2
dt−

i
p g

a

e

I1(tka)K1(tka)

tz1+ t2
dt%, (B26)

contains two integrals whose integrands are singular for o:0, but their
contributions cancel each other. Therefore, it is convenient to combine the
integrands in the region t$ [0, 1]:

Z011 =2E0116g
1

0 $J1(tka)H(2)
1 (tka)

2tz1− t2
−

i
p

I1(tka)K1(tka)

tz1+ t2 % dt

−
i
p g

a

1

I1(tka)K1(tka)

tz1+ t2
dt7. (B27)

The singularity in the first integrand for t=1 can be removed by substituting
t=sin (u) and the second integral can be transformed into a finite integral by
substituting t=1/t. Thus, the modal impedance is defined by

Z011 =2E0116g
1
2
p

0 $J1(ka sin u)H(2)
1 (ka sin u)

2 sin u
−

i
p

I1(ka sin u)K1(ka sin u) cos u

sin uz1+sin2 u % du

−
i
p g

1

0

I1(ka/t)K1(ka/t)

zt2 +1
dt7. (B28)
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In case (4) the pole lies on t= amm /k=1. This means that the free field
wavenumber k equals the radial wavenumber amm . The axial wavenumber:
kmm =z(k2 − a2

mm) then equals zero. Physically, this occurs at duct mode resonance
frequencies which are not studied here.

APPENDIX C: RADIATED ACOUSTIC POWER

To compute the time averaged power radiated by the baffled finite duct, the time
average of the acoustic normal intensity I� · n has to be integrated over a surface
that surrounds the duct,

P� =gS

I� · n dS, (C1)

with surface S, I= pu as the acoustic energy flux vector, and n as the unit normal
vector. The bar notation denotes the time average.

C.1.    

The radiated power by the duct can be computed by integrating the time
averaged product of acoustic pressure p and normal velocity ur over the duct wall
surface:

P� =−1
2 Re g

L

−L g
2p

0

p(a, u, z)u*r (a, u, z)a du dz, (C2)

where * denotes the complex conjugate. By using equation (36) for pressure p and
equation (20) for normal velocity ur the following expression for the acoustic
normal intensity at the duct wall can be derived:

I� · n=
1
2p

s
a

m=−a
e−imu s

a

n=−a
h*n (z) einu s

a

m=1

Jm (amma) [Amm (z) e−ikmmz +Bmm (z) eikmmz].

(C3)

Integrating this expression over the duct wall surface yields

P� = 1
2a Re s

a

m=−a
s
a

m=1

Jm (amma) g
L

−L

h*m (z)[Amm (z) e−ikmmz +Bmm (z) eikmmz] dz. (C4)
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C.2.    

The transmitted power in the axial (positive z) direction Pz over a duct
cross-section can be computed by integrating the time averaged product of
acoustic pressure p and axial velocity uz over the duct cross-section:

P�z (z0)= 1
2 Re g

a

0 g
2p

0

p(r, u, z0)u*z (r, u, z0)r du dr. (C5)

By using equation (36) for pressure p, and

uz (r, u, z0)= s
a

m=−a
s
a

m=1

Jm (ammr) e−imu kmm

r0c0k
(Amm (z0) e−ikmmz0 −Bmm (z0) eikmmz0) (C6)

for axial velocity uz , the following expression for the acoustic axial intensity at the
duct exit can be derived:

I� · ez = s
a

m=−a
s
a

n=−a
s
a

m=1

s
a

n=1

e−imu einuJm (ammr)Jn (annr)
k*nn

kr0c0

× [Amm (z0)A*nn (z0) e−i(kmm − k*nn )z0 −Amm (z0)B*nn (z0) e−i(kmm + k*nn )z0

+ Bmm (z0)A*nn (z0) ei(kmm + k*nn )z0 −Bmm (z0)B*nn (z0) ei(kmm − k*nn )z0]. (C7)

Integrating this expression over the duct cross-section yields

P�z (z0)= s
a

m=−a
s
a

m=1

pN2
mm

r0c0k
{Re (kmm )[=Amm (z0)=2 − =Bmm (z0)=2]

+2Im (kmm ) Im [A*mm (z0)Bmm (z0)]}. (C8)

with N2
mm from equation (A14). The total acoustic power radiated out of the duct

can then be computed with

P� =P�z (L)−P�z (−L). (C9)


